read
This commit is contained in:
		
							parent
							
								
									3affee9bc0
								
							
						
					
					
						commit
						320b049354
					
				| 
						 | 
				
			
			@ -1,14 +1,38 @@
 | 
			
		|||
APIs Console Project Setup:
 | 
			
		||||
------------
 | 
			
		||||
If you have not yet, you must set your APIs Console project to enable Prediction
 | 
			
		||||
API and Google Storage. Go to APIs Console https://code.google.com/apis/console/
 | 
			
		||||
and select the project you want to use. Next, go to Services, and enable both
 | 
			
		||||
Prediction API and Google Storage. You may also need to enable Billing (Billing)
 | 
			
		||||
in the left menu.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Data Setup:
 | 
			
		||||
----------
 | 
			
		||||
Before you can run the prediction sample prediction.rb, you must load some csv
 | 
			
		||||
formatted data into Google Storage. You can do this by running setup.sh with a 
 | 
			
		||||
bucket/object name of your choice. You must first create the bucket you want to 
 | 
			
		||||
use. This can be done with the gsutil function or via the web UI (Storage 
 | 
			
		||||
Access) in the Google APIs Console. i.e.:
 | 
			
		||||
formatted data into Google Storage. 
 | 
			
		||||
 | 
			
		||||
1 - You must first create the bucket you want to use. This can be done 
 | 
			
		||||
with the gsutil function or via the web UI (Storage Access) in the Google 
 | 
			
		||||
APIs Console. i.e. 
 | 
			
		||||
# gsutil mb gs://BUCKET
 | 
			
		||||
 | 
			
		||||
OR
 | 
			
		||||
 | 
			
		||||
Go to APIs Console -> Storage Access (on left) and the Google Storage Manager,
 | 
			
		||||
and create your bucket there.
 | 
			
		||||
 | 
			
		||||
2 - We now load the data you want to use to Google Storage. We have supplied a
 | 
			
		||||
basic language identification dataset in the sample for testing.
 | 
			
		||||
 | 
			
		||||
# chmod 744 setup.sh
 | 
			
		||||
# ./setup.sh BUCKET/OBJECT
 | 
			
		||||
Note you need gsutil in your path for this to work.
 | 
			
		||||
 | 
			
		||||
If you have your own dataset, you can do this manually as well.
 | 
			
		||||
gsutil cp your_dataset.csv gs://BUCKET/your_dataset.csv
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
In the script, you must then modify the datafile string. This must correspond with the
 | 
			
		||||
bucket/object of your dataset (if you are using your own dataset). We have
 | 
			
		||||
provided a setup.sh which will upload some basic sample data. The section is
 | 
			
		||||
| 
						 | 
				
			
			@ -28,7 +52,7 @@ API. You can also set it up so the user can grant access.
 | 
			
		|||
First, run the google-api script to generate access and refresh tokens. Ex.
 | 
			
		||||
 | 
			
		||||
# cd google-api-ruby-client
 | 
			
		||||
# ruby-1.9.2-p290  bin/google-api oauth-2-login --scope=https://www.googleapis.com/auth/prediction --client-id=NUMBER.apps.googleusercontent.com --client-secret=CLIENT_SECRET
 | 
			
		||||
# ruby bin/google-api oauth-2-login --scope=https://www.googleapis.com/auth/prediction --client-id=NUMBER.apps.googleusercontent.com --client-secret=CLIENT_SECRET
 | 
			
		||||
 | 
			
		||||
Fill in your client-id and client-secret from the API Access page. You will
 | 
			
		||||
probably have to set a redirect URI in your client ID
 | 
			
		||||
| 
						 | 
				
			
			@ -46,6 +70,25 @@ you are loading it as a yaml, ensure you rename/move the file, as the
 | 
			
		|||
move the .google-api.yaml file to the sample directory.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Usage :
 | 
			
		||||
-------
 | 
			
		||||
At this, point, you should have 
 | 
			
		||||
 - Enabled your APIs Console account
 | 
			
		||||
 - Created a storage bucket, if required
 | 
			
		||||
 - Uploaded some data to Google Storage
 | 
			
		||||
 - Modified the script to point the 'datafile' variable to the BUCKET/OBJECT  name
 | 
			
		||||
 - Modified the script to put your credentials in, either in the code or by
 | 
			
		||||
   loading the generated .yaml file
 | 
			
		||||
 
 | 
			
		||||
We can now run the service! 
 | 
			
		||||
# ruby prediction.rb
 | 
			
		||||
 | 
			
		||||
This should start a service on http://localhost:4567. When you hit the service,
 | 
			
		||||
your ruby logs should show the Prediction API calls, and print the prediction
 | 
			
		||||
output in the debug. 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
This sample currently does not cover some newer features of Prediction API such
 | 
			
		||||
as streaming training, hosted models or class weights. If there are any
 | 
			
		||||
questions or suggestions to improve the script please email us at
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -6,7 +6,6 @@
 | 
			
		|||
# Original Author:: Bob Aman, Winton Davies, Robert Kaplow
 | 
			
		||||
# Maintainer:: Robert Kaplow (mailto:rkaplow@google.com)
 | 
			
		||||
 | 
			
		||||
$LOAD_PATH:.unshift File.dirname('lib')
 | 
			
		||||
require 'rubygems'
 | 
			
		||||
require 'sinatra'
 | 
			
		||||
require 'datamapper'
 | 
			
		||||
| 
						 | 
				
			
			@ -109,6 +108,7 @@ get '/' do
 | 
			
		|||
    # Do a prediction.
 | 
			
		||||
    # FILL IN DESIRED INPUT:
 | 
			
		||||
    # -------------------------------------------------------------------------------
 | 
			
		||||
    # Note, the input features should match the features of the dataset.
 | 
			
		||||
    prediction,score = get_prediction(datafile, ["Alice noticed with some surprise."])
 | 
			
		||||
    # -------------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -127,10 +127,11 @@ end
 | 
			
		|||
def train(datafile)
 | 
			
		||||
  input = "{\"id\" : \"#{datafile}\"}"
 | 
			
		||||
  puts "training input: #{input}"
 | 
			
		||||
  status, headers, body = @client.execute(@prediction.training.insert,
 | 
			
		||||
                                          {},
 | 
			
		||||
                                          input,
 | 
			
		||||
                                          {'Content-Type' => 'application/json'})
 | 
			
		||||
  result = @client.execute(:api_method => @prediction.training.insert,
 | 
			
		||||
                           :merged_body => input,
 | 
			
		||||
                           :headers => {'Content-Type' => 'application/json'}
 | 
			
		||||
                           )
 | 
			
		||||
  status, headers, body = result.response
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
##
 | 
			
		||||
| 
						 | 
				
			
			@ -141,8 +142,9 @@ end
 | 
			
		|||
#                 then the correct string is "bucket/object"
 | 
			
		||||
# @return [Integer] status The HTTP status code of the training job.
 | 
			
		||||
def get_training_status(datafile)
 | 
			
		||||
  status, headers, body = @client.execute(@prediction.training.get,
 | 
			
		||||
                                          {'data' => datafile})
 | 
			
		||||
  result = @client.execute(:api_method => @prediction.training.get,
 | 
			
		||||
                           :parameters => {'data' => datafile})
 | 
			
		||||
  status, headers, body = result.response
 | 
			
		||||
  return status
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -157,11 +159,14 @@ end
 | 
			
		|||
 | 
			
		||||
def is_done?(datafile)
 | 
			
		||||
  status = get_training_status(datafile)
 | 
			
		||||
  while true do
 | 
			
		||||
  # We use an exponential backoff approach here.
 | 
			
		||||
  test_counter = 0
 | 
			
		||||
  while test_counter < 10 do
 | 
			
		||||
    puts "Attempting to check model #{datafile} - Status: #{status} "
 | 
			
		||||
    return true if status == 200
 | 
			
		||||
    sleep 10
 | 
			
		||||
    sleep 5 * (test_counter + 1)
 | 
			
		||||
    status = get_training_status(datafile)
 | 
			
		||||
    test_counter += 1
 | 
			
		||||
  end
 | 
			
		||||
  return false
 | 
			
		||||
end
 | 
			
		||||
| 
						 | 
				
			
			@ -184,12 +189,15 @@ def get_prediction(datafile,input_features)
 | 
			
		|||
  # We take the input features and put it in the right input (json) format.
 | 
			
		||||
  input="{\"input\" : { \"csvInstance\" :  #{input_features}}}"
 | 
			
		||||
  puts "Prediction Input: #{input}"
 | 
			
		||||
  status, headers, body = @client.execute(@prediction.training.predict,
 | 
			
		||||
                                                     {'data' => datafile},
 | 
			
		||||
                                                     input,
 | 
			
		||||
                                                     {'Content-Type' => 'application/json'})
 | 
			
		||||
  prediction_data = JSON.parse(body[0])
 | 
			
		||||
  
 | 
			
		||||
  result = @client.execute(:api_method => @prediction.training.predict,
 | 
			
		||||
                           :parameters => {'data' => datafile},
 | 
			
		||||
                           :merged_body => input,
 | 
			
		||||
                           :headers => {'Content-Type' => 'application/json'})
 | 
			
		||||
  status, headers, body = result.response
 | 
			
		||||
  prediction_data = result.data
 | 
			
		||||
  puts status
 | 
			
		||||
  puts body
 | 
			
		||||
  puts prediction_data
 | 
			
		||||
  # Categorical
 | 
			
		||||
  if prediction_data["outputLabel"] != nil
 | 
			
		||||
    # Pull the most likely label.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue